
Jason Intentional Learning: an Operational
Semantics

Carlos A. González-Alarcón1, Francisco Grimaldo1, and Alejandro
Guerra-Hernández2

1 Departament d’Informàtica, Universitat de València
Avinguda de la Universitat s/n, (Burjassot) València, España
{carlos.a.gonzalez, francisco.grimaldo}@uv.es

2 Departamento de Inteligencia Artificial, Universidad Veracruzana
Sebastián Camacho No. 5, Xalapa, Ver., México, 91000

aguerra@uv.mx

Abstract. This paper introduces an operational semantics for defining
Intentional Learning on Jason, the well known Java-based implementa-
tion of AgentSpeak(L). This semantics enables Jason to define agents
capable of learning the reasons for adopting intentions based on their
own experience. In this work, the use of the term Intentional Learn-
ing is strictly circumscribed to the practical rationality theory where
plans are predefined and the target of the learning processes is to learn
the reasons to adopt them as intentions. Top-Down Induction of Logi-
cal Decision Trees (TILDE) has proved to be a suitable mechanism for
supporting learning on Jason: the first-order representation of TILDE is
adequate to form training examples as sets of beliefs, while the obtained
hypothesis is useful for updating the plans of the agents.

Keywords: Operational semantics, Intentional Learning, AgentSpeak(L), Ja-
son .

1 Introduction

In spite of the philosophical and formal sound foundations of the Belief-Desire-
Intention (BDI) model of rational agency [4,11,12], learning in this context
has received little attention. Coping with this, frameworks based on Decision
Trees [13,14] or First-Order Logical Decision Trees [7] have been developed to
enable BDI agents to learn about the executions of their plans.

JILDT3 [8] is a library that provides the possibility to define Intentional
Learning agents in Jason, the well known Java-based implementation [3] of
AgentSpeak(L) [10]. Agents of this type are able to learn about their reasons to
adopt intentions, performing Top-Down Induction of Logical Decision Trees [1].
A plan library is defined for collecting training examples of executed intentions,
labelling them as succeeded or failed, computing logical decision trees, and using

3 Available on http://jildt.sourceforge.net/

the induced trees to modify accordingly the plans of learner agents. In this way,
the Intentional Learning approach [9] can be applied to any Jason agent by
declaring its membership to this type of agent.

The AgentSpeak(L) language interpreted by Jason does not enable learning
by default. However it is possible to extend the language grammar and its seman-
tics for supporting Intentional Learning. This paper focuses on describing this
operational semantics, which enables Jason to define agents capable to learn the
reasons for adopting intentions based on their own experience. Direct inclusion
of the learning steps into the reasoning cycle makes this approach unique.

The organization of the paper is as follows: Section 2 briefly introduces
the AgentSpeak(L) agent oriented programming language, as implemented by
Jason. Section 3 introduces briefly the Top-Down Induction of Logical Deci-
sion Trees (TILDE) method. Section 4 describes the language grammar and
operational semantics that define Intentional Learner agents on Jason. Finally,
section 5 states the final remarks and discusses future work, particularly focusing
on the issues related with social learning.

2 Jason and AgentSpeak(L)

Jason [3] is a well known Java-based implementation of the AgentSpeak(L)
abstract language for rational agents. For space reasons, a simplified version of
the language interpreted by Jason containing the fundamental concepts of the
language that concerns this paper is shown in the Table 1 (the full version of the
language is defined in [3]). An agent ag is defined by a set of beliefs bs and plans
ps. Each belief b ∈ bs can be either a ground first-order literal or its negation (a
belief) or a Horn clause (a rule). Atoms at are predicates, where P is a predicate
symbol and t1, . . . , tn are standard terms of first-order logic. Besides, atoms can
be labelled with sources. Each plan p ∈ ps has the form: @lbl te : ct← h. @lbl is
an unique atom that identifies the plan. A trigger event (te) can be any update
(addition or deletion) of beliefs or goals. The context (ct) of a plan is an atom,
the negation of an atom or a conjunction of them. A non empty plan body (h)
is a sequence of actions, goals, or belief updates. Two kinds of goals are defined,
achieve goals (!) and test goals (?).

ag ::= bs ps
bs ::= b1 . . . bn (n ≥ 0)
ps ::= p1 . . . pn (n ≥ 1)
p ::= @lbl te : ct← h
te ::= +at | − at | + g | − g
ct ::= ct1 | >
ct1 ::= at | ¬at | ct1 ∧ ct1
h ::= h1;> | >

h1 ::= a | g | u | h1;h1

at ::= P (t1, . . . , tn) (n ≥ 0,
| P (t1, . . . , tn)[s1, . . . , sm] m > 0)

s ::= percept | self | id
a ::= A(t1, . . . , tn) (n ≥ 0)
g ::= !at | ?at
u ::= +b | − b

Table 1. Jason language grammar. Adapted from [3].

The operational semantics of the language is given by a set of rules that
define a transition system between configurations, as depicted in Figure 2(a). A
configuration is a tuple 〈ag, C,M, T, s〉, where:

– ag is an agent program defined by a set of beliefs bs and plans ps.
– An agent circumstance C is a tuple 〈I, E,A〉, where: I is a set of intentions; E

is a set of events; and A is a set of actions to be performed in the environment.
– M is a set of input/output mailboxes for communication.
– T is a tuple 〈R,Ap, ι, ε, ρ〉 that keeps track of temporary information. R and
Ap are the sets of relevant and applicable plans, respectively. ι, ε, ρ record
the current intention, event and selected plan, respectively.

– s labels the current step in the reasoning cycle of the agent.

Transitions are defined in terms of semantic rules with form:

cond

C → C ′ (rule id)

where C = 〈ag, C,M, T, s〉 is a configuration that can become a new configura-
tion C ′ if a condition is satisfied. Appendix A shows the operational semantic
rules extracted from from [3,2] that are relevant for the purposes of this paper.

3 Top-down Induction of Logical Decision Trees

Top-down Induction of Logical DEcision Trees (TILDE) [1] is an Inductive Logic
Programming technique adopted for learning in the context of rational agents [9].
The first-order representation of TILDE is adequate to form training examples
as sets of beliefs, e.g., the beliefs of the agent supporting the adoption of a plan
as an intention; and the obtained hypothesis is useful for updating the plans and
beliefs of the agents.

A Logical Decision Tree is a binary first-order decision tree where: (a) Each
node is a conjunction of first-order literals; and (b) The nodes can share variables,
but a variable introduced in a node can only occur in the left branch below that
node (where it is true). Unshared variables may occur in both branches.

Three inputs are required to compute a Logical Decision Tree: A set of train-
ing examples, the background knowledge of the agent and the language bias.
Training examples are atomic formulae composed of an atom referring to the
plan that was intended; the set of beliefs the agent had when the intention was
adopted or when the intention failed; and the label indicating a successful or
failed execution of the intention. Examples are collected every time the agent
believes an intention has been achieved (success) or dropped (failure). The rules
believed by the agent, constitute the background knowledge of the agent, i.e.,
general knowledge about the domain of experience of the agent. The language
bias is formed by rmode directives that indicate which literals should be consid-
ered as candidates to form part of a Logical Decision Tree.

The TILDE algorithm is basically a first-order version of the well known C4.5
algorithm. The algorithm is not described in this paper, due to space limitations,
but it is advisable to consult the original report of TILDE [1] or the version of
the algorithm reported in [8] for further details.

4 Extending the Language: a TILDE-Learning approach

The extension to the grammar that is required to incorporate the induction of
Logical Decision Trees [8] into Jason is shown in Table 2. As any agent, a learner
agent aglrnr is formed by a set of beliefs and a set of plans. Beliefs can be either
normal beliefs nbs (as defined by bs in Table 1) or learning beliefs lbs. Learn-
ing beliefs are related to the learning process input and configuration. These
beliefs can be of three types: rmode directives, settings and training examples.
rmode literals are directives used to represent the language bias (as introduced in
Section 3). settings literals customize the learning process configurations, e.g.,
the metrics used for building a new hypothesis. In turn, examples are literals
used for defining training examples. A training example defines the relation be-
tween the label of the plan chosen to satisfy an intention, the perception of the
environment, and the result of the execution of the plan (successful or failed)
captured as the class of the examples. A plan can be either normal (non learn-
able) or learnable, i.e., a plan in which new contexts can be learned. To become
a learnable plan (lp), a plan just need to annotate its label as such.

aglrnr ::= bs ps
bs ::= nbs lbs
nbs ::= b1 . . . bn (n ≥ 0)
lbs ::= lb1 . . . lbn (n ≥ 0)
lb ::= rmode(b)

| settings(t1, . . . , tn) (n ≥ 2)
| example(lbl, bs, class)

class ::= succ | fail
ps ::= nps lps
nps ::= p1 . . . pn (n ≥ 1)
lps ::= lp1 . . . lpn (n ≥ 1)
lp ::= @lbl[learnable]

te : ct← h

Table 2. Extension to the Jason grammar language enabling Intentional Learning.

Semantics is extended by adding a Learning component (L) into configura-
tions 〈ag, C,M, T, L, s〉. L is a tuple 〈ρ,Exs, Cnds,Bst,Build, T ree〉 where:

– The plan that triggered the learning process is denoted by ρ,
– Exs is the set of training examples related to the executed intention,
– Cnds is the set of literals (or conjunctions of literals) that are candidates to

form part of the induced logical decision tree,
– Bst is a pair 〈at, gain〉 (where gain ∈ R) keeping information about the

candidate that maximizes the gain ratio measure,
– Build is a stack of building tree parameters (btp) tuples. Every time a set

of training examples is split, a new btp is added into Build for computing a
new inner tree afterwards. Each btp is a tuple 〈Q,Exs,Branch〉, where : Q
is the conjunction of literals in top nodes; Exs is the partition of examples
that satisfies Q, which will be used for building the new tree; and Branch ∈
{left, right} indicates where the tree being computed must be placed.

– Tree is a stack of lists. A tree can be represented as a list, where the first
element denotes the node label and the remaining elements represent left
and right branches, respectively. Figure 1 shows how this works.

ed

cb

a

1
a

{a}

2

b

a

{a}

{b}

3

d

b

a

{a}

{b,d}

4

ed

b

a

{a}

{b,d,e}

5

ed

b

a

{a,{b,d,e}}

6

ed

cb

a

{a,{b,d,e},c}

Fig. 1. Every time an inner tree is being built, a new list is added into the stack (1,2).
When a leaf node is reached, this is added into the list on the top of the stack (3,4);
in case of a right branch, the whole list is removed and added into the next list (5). If
there is not a list under the top of the stack the main tree has been computed (6).

For the sake of readability, we adopt the following notational conventions in
semantic rules:

– We write Lρ to make reference to the component ρ of L. Similarly for all the
other components of a configuration.

– A stack is denoted by [α1‡ . . . ‡αz], where α1 is the bottom of the stack and
αz is the top of the stack. ‡ delimits the elements of the stack. LBuild[α]
denotes the α-element on the top of stack LBuild. Similarly for LTree.

– If p is a plan on the form @lbl te : ct← h, then Label(p) = lbl, TrEv(p) = te,
Ctxt(p) = ct and Body(p) = h.

– Head(lst) and Tail(lst) denote the head and the tail of a list, respectively.

The reasoning cycle is then extended for enabling Intentional Learning as
can be seen in Figure 2(b). Two rules enable agents to collect training examples
labelled as succ when the execution of a plan is successful (ColExsucc) or fail
otherwise (ColExfail).

Rule ColExsucc adds a training example labelled as succ when the selected
event Tε is an achievement goal addition event, the selected plan Tρ is a learnable
plan, and the execution of an intention is done, (i.e., when the reasoning cycle is
in the step ClrInt and there is nothing else to be executed). This rule removes
the whole intention Tι like rule ClrInt1 in the default operational semantics
(Appendix A) but for learnable plans.

Tε = 〈+!at, i〉 Tρ ∈ aglps Tι = [head← >]

〈ag, C,M, T, L,ClrInt〉 → 〈ag′, C ′,M, T, L, ProcMsg〉
(ColExsucc)

s.t. ag′lbs = aglbs + example(Label(Tρ), intend(at) ∪ agbs, succ)
C ′
I = CI\{Tι}

In a similar way, rule ColExfail adds a training example labelled as fail when
the reasoning cycle is on the step ExecInt, the selected event Tε is an achieve-
ment goal deletion event and the selected plan Tρ is a learnable plan. Besides

FindEx

NoLearn BestTest

Cnds

LangBias

 FindExs2

 FindExs1

 LangBias1

LangBias2 BestTst2

Build3end

Build3rec

Rho1Rho2

Learn Learning

ExTilde

Test1

Test2

SelEv RelPl

SelIntClrInt

ExecInt

AddIM

SelAppl

AppPl

ProcMsg

 Rel2

 SelEv1 Rel1

 Appl2 Appl1 SelEv2

 SelAppl

 SelInt1

 ExtEv
 IntEv

 SelInt2

Action TestGl1
 TestGl2

 AddBel
 DelBel

 ClrInt1
 ClrInt3

 AchvGl

 ClrInt2

ProcAct

 ExecDone
ExecAct

 BestTst1

Build3leaf
Build3fit

 ColExfail

 ColExsucc

BuildTree

Fig. 2. Extended reasoning cycle. a) Unshaded states and solid lines define the ba-
sic reasoning cycle. b) Shaded states and dashed lines represent the extension of the
reasoning cycle.

adding a new training example, this rule adds an achievement goal learning
event. The current intention Tι is suspended and associated to the new event.
Since a new event is added, the reasoning cycle is moved towards ProcMsg, as it
does the rule AchvGl in the default operational semantics (Appendix A).

Tε = 〈−!at, i〉 Tρ ∈ aglps Tι = i[head← h]

〈ag, C,M, T, L,ExecInt〉 → 〈ag′, C ′,M, T, L′, P rocMsg〉
(ColExfail)

s.t. ag′lbs = aglbs + example(Label(Tρ), intend(at) ∪ agbs, fail)
C ′
E = CE ∪ {〈+!learning, Tι〉}

L′
ρ = Tρ

C ′
I = CI\{Tι}

The learning process starts in ExecInt by rule Learn when the selected
event is 〈+!Learning, i〉. Rule ExTilde fires when LTree is an empty stack, and
starts the construction of the Logical Decision Tree.

Tε = 〈+!learning, i〉
〈ag, C,M, T, L,ExecInt〉 → 〈ag, C,M, T, L, Learning〉

(Learn)

LTree = >
〈ag, C,M, T, L, Learning〉 → 〈ag, C,M, T, L, F indEx〉

(ExTilde)

Once the tree has been built, rules Test1 and Test2 check whether some-
thing new has been learned. Rule Test1 is fired when the new hypothesis does
not subsume the prior context (i.e., it is not a generalization of it). Then, it

parses the Tree into a Logical Formula (through function parseLF), that is
used to update the context of the failed plan, and restarts the learning compo-
nent for future calls. Instead, when the learned hypothesis subsumes the prior
context, rule Test2 moves the learning cycle towards the NoLearn state. Note
that a hypothesis subsuming a prior context means that nothing new has been
learned, since learning was triggered because of a plan failure. The agent cycle is
automatically lead from the NoLearn to the ExecInt state. Recovering from a
situation in which individual learning has been unsuccessful is out of the scope
of this paper and remains part of the future work, as discussed in Section 5.

Lρ = @lbl te : ct← h parseLF(LTree) = lct lct 6� ct
〈ag, C,M, T, L, Learning〉 → 〈ag′, C ′,M, T, L′, ExecInt〉

(Test1)

s.t. ag′ps = {agps\Lρ} ∪ {@lbl[learnable] te : lct :← h}
L′ = 〈>, {}, {},>, [], []〉
C ′
E = CE\Tε

Lρ = te : ct← h parseLF(LTree) = lct lct � ct
〈ag, C,M, T, L, Learning〉 → 〈ag′, C,M, T, L,NoLearn〉

(Test2)

4.1 Semantics for Building Logical Decision Trees

This section presents the transition system for building a Logical Decision Tree.
The first thing a learner agent needs for executing the TILDE algorithm is to get
the set of training examples regarding the failed plan. Each example related to
the failed plan is represented as example(lbl, bs, class), where the first argument
is the label of the failed plan; the rest of the arguments are the state of the world
when the example was added and the label class of the example. Rule FindExs1

applies when at least one example regarding Lρ is a logical consequence of the
learning beliefs of the agent. Here, the set LExs is updated and the learning cycle
goes forward the LangBias step. If there is no training example, rule FindExs2

moves the cycle forward the NoLearn step.

Exs = {lbs|lbs = example(Label(Lρ), bs, class) ∧ aglbs |= lbs}
〈ag, C,M, T, L, F indEx〉 → 〈ag, C,M, T, L′, LangBias〉

(FindExs1)

s.t. L′
Exs = Exs

aglbs 6|= example(Label(Lρ), bs, class)

〈ag, C,M, T, L, F indEx〉 → 〈ag, C,M, T, L,NoLearn〉
(FindExs2)

The language bias is generated by rule LangBias1, through the function
getLangBias(), whose only parameter is the set of training examples in LExs.
If the set of rmode directives is not empty, the cycle goes forward the step

BuildTree. In this transition, the whole directives in LB are added as beliefs
in the learning beliefs of the agent. Besides, a building tree parameters tuple is
added in LBuild: the initial query is a literal indicating the intention the agent
was trying to reach; the initial examples are those in LExs; and the symbol
> denotes that this is the configuration for building the main node. The rule
LangBias2 moves the cycle forward the NoLearn step when is not possible
to generate the language bias (training examples had no information about the
beliefs of the agent when these were added).

getLangBias(LExs) = LB

〈ag, C,M, T, L, LangBias〉 → 〈ag′, C,M, T, L′, BuildTree〉
(LangBias1)

s.t. ∀(rmode(X) ∈ LB) . ag′lbs = aglbs + rmode(X)
Lρ = @lbl +!at : ct← h
L′
Build = [〈intend(at), LExs,>〉]

getLangBias(LExs) = {}
〈ag, C,M, T, L, LangBias〉 → 〈ag, C,M, T, L,NoLearn〉

(LangBias2)

At this point, the necessary data for executing the TILDE algorithm [1] has
been processed. Next rules define the transitions for building a Logical Decision
Tree. Rule Build3leaf is applied when a stop condition is reached (e.g., the whole
examples belong to the same class). A boolean function like stopCriteria()
returns true if the examples in its argument satisfy a stop criteria, and false
otherwise. The leaf node is obtained through the function majority class
and it is added into the list on the top of the LTree stack. If the leaf node is in a
Right branch, the whole list on the top is removed from the top and added into
the list under the top of the stack (see Figure 1). The stack LBuild is updated
removing the tuple on the top of it. If no stop condition is found, the learning
cycle moves towards the next step (Build3rec).

LBuild[〈Q,Exs,Branch〉] stopCriteria(Exs) = true

〈ag, C,M, T, L,BuildTree〉 → 〈ag, C,M, T, L′, BuildTree〉
(Build3leaf)

s.t. leaf = majority class(Exs),
LTree = [Tz‡ . . . ‡T2‡T1],
Tree = T1 ∪ {leaf},

L′
Tree =


[Tz ‡ . . . ‡ T2 ‡ Tree] if Branch = Left, or

(Branch = Right and T2 = >)

[Tz ‡ . . . ‡ {T2 ∪ Tree}] if Branch = Right and T2 6= >
L′
Build = LBuild\〈Q,Exs,Branch〉

LBuild[〈Q,Exs,Branch〉] stopCriteria(Exs) = false

〈ag, C,M, T, L,BuildTree〉 → 〈ag, C,M, T, L,Cnds〉
(Build3rec)

Sometimes, the LTree stack has more than one element but there are no more
elements for building inner nodes (e.g. the right side of a tree is deeper than the
left one). In this cases, rule Build3fit flats the LTree stack adding the list on
the top of the stack inside the one below until there is only one list in the stack.

LTree[T2 ‡ T1] T2 6= > LBuild[>]

〈ag, C,M, T, L,BuildTree〉 → 〈ag, C,M, T, L′, BuildTree〉
(Build3fit)

s.t. L′
Tree = [Tz ‡ . . . ‡ {T2 ∪ T1}]

Rule Rho1 generates the candidates to form part of the tree using the func-
tion rho() whose parameters are a query Q and the language bias. This rule
updates the element LCnds when a non-empty set of candidates has been gen-
erated; otherwise, rule Rho2 moves the cycle forwards the NoLearn step.

LB = {lb|lb = rmode(RM) ∧ aglbs |= lb}
LBuild[〈Q,Exs,Branch〉] rho(Q,LB) = Candidates

〈ag, C,M, T, L,Cnds〉 → 〈ag, C,M, T, L′, BestTest〉
(Rho1)

s.t. L′
Cnds = Candidates
∀(cnd ∈ Candidates) . cnd = at1 ∧ ... ∧ atn (n ≥ 1)

LB = {lb|lb = rmode(RM) ∧ aglbs |= lb}
LBuild[〈Q,Exs,Branch〉] rho(Q,LB) = {}

〈ag, C,M, T, L,Cnds〉 → 〈ag, C,M, T, L,NoLearn〉
(Rho2)

Rule BestTst1 evaluates iteratively each candidate in LCnds for selecting
the candidate that maximizes gain ratio.

gainRatio(Head(LCnds)) = G

〈ag, C,M, T, L,BestTest〉 → 〈ag, C,M, T, L′, BestTest〉
(BestTst1)

s.t. L′
Bst =

{
G if G > LBst

LBst otherwise

L′
Cnds = Tail(LCnds)

When all candidates have been evaluated, rule BestTst2 splits the training
examples in those satisfying Q∧LBst and those that do not. Two new btp tuples
are added into the LBuild stack for building inner trees afterwards, and a new
list is added into the LTree.

LCnds = {} LBuild[〈Q,Exs,Branch〉
〈ag, C,M, T, L,BestTest〉 → 〈ag, C,M, T, L′, BuildTree〉

(BestTst2)

s.t. bg = {bs ∈ agbs|bs = at:-body ∧ body 6= >}
ExsL = {Ex ∈ Exs|Ex = example(lbl, bs, class) ∧ (bs∪ bg) |= (Q∧LBst)}
ExsR = {Ex ∈ Exs|Ex = example(lbl, bs, class) ∧ (bs∪ bg) 6|= (Q∧LBst)}
LBuild = [btpz ‡ . . . ‡ 〈Q,Exs,Branch〉]
L′
Build = [btpz ‡ . . . ‡ 〈Q,ExsR, Right〉 ‡ 〈Q ∧ LBst, ExsL, Left〉]

Finally rule Build3end indicates the end of the building process when there
is no building tree parameters tuple in the stack LBuild. The flow of the cycle
goes forward the step Learning for processing the learned hypothesis.

LBuild[>]

〈ag, C,M, T, L,BuildTree〉 → 〈ag, C,M, T, L, Learning〉
(Build3end)

As mentioned before, once the Logical Decision Tree has been built, the
learned hypothesis is used for updating the plans of the agent when more specific
hypothesis is learned (see rule Test1). If the learned hypothesis is either more
general or similar to prior knowledge means that there was no learning, and
therefore the reasoning cycle continues with its default operation.

5 Discussion and future work

The operational semantics presented in this paper defines Intentional Learning
on Jason, which has served to create agents capable of learning new reasons
for adopting intentions, when the executions of their plans failed. Learning is
achieved through Top-Down Induction of Logical Decision Trees (TILDE), that
has proved to be a suitable mechanism for supporting learning on Jason since the
first-order representation of these trees is adequate to form training examples as
sets of beliefs, while the obtained hypothesis is useful for updating the plans of
the agents. Current work provides a formal and precise approach to incorporate
Intentional Learning into BDI multi-agent systems, and a better understanding
of the reasoning cycle of agents performing this type of learning. For reasons
of space, a demonstration scenario showing the benefits of this approach is not
presented here but can be found in [8], where we evaluate how agents improve
their performance by executing Intentional Learning whenever the execution of
a plan is failed.

The semantics presented in this paper paves the way for future research on
Social Learning, as an alternative for recovering from individual learning failures.
Social Learning has been defined as the phenomenon by means of which a given
agent can update its own knowledge base by perceiving the positive or negative
effects of any given event undergone or actively produced by another agent on
a state of the world within which the learning agent has as a goal [6]. It would
be interesting to identify the mechanisms that must be implemented at the
agent level to enable them to learn from one another. A first answer is that the
intentional level of the semantics presented in this paper is required to define
distributed learning protocols as a case of collaborative goal adoption [5], where

a group of agents sharing a plan has as social goal learning a new context for
the plan in order to avoid possible future failures. As an example of learning
protocol, agents in a group could share experiences (training examples) with the
learner agent (the one that discovered the plan execution failure) to achieve this
social goal.

Acknowledgements

This work has been jointly supported by the Spanish MICINN and the Euro-
pean Commission FEDER funds, under grant TIN2009-14475-C04. First author
is supported by Conacyt doctoral scholarship number 214787. Third author is
supported by Conacyt project number 78910.

References

1. H. Blockeel, L. D. Raedt, N. Jacobs, and B. Demoen. Scaling up inductive logic
programming by learning from interpretations. Data Mining and Knowledge Dis-
covery, 3(1):59–93, 1999.

2. R. H. Bordini and J. F. Hübner. Semantics for the jason variant of agentspeak
(plan failure and some internal actions). In ECAI, pages 635–640, 2010.

3. R. H. Bordini, J. F. Hübner, and M. Wooldridge. Programming Multi-Agent Sys-
tems in Agent-Speak using Jason. John Wiley & Sons Ltd, 2007.

4. M. E. Bratman. Intention, Plans, and Practical Reason. Harvard University Press,
Cambridge, MA., USA, and London, England, 1987.

5. C. Castelfranchi. Modelling social action for ai agents. Artif. Intell., 103(1-2):157–
182, Aug. 1998.

6. R. Conte and M. Paolucci. Intelligent social learning. Journal of Artificial Societies
and Social Simulation, 4(1), 2001.

7. A. Guerra-Hernández, A. El-Fallah-Seghrouchni, and H. Soldano. Learning in
BDI Multi-agent Systems. In J. Dix and J. Leite, editors, Computational Logic in
Multi-Agent Systems: 4th International Workshop, CLIMA IV, Fort Lauderdale,
FL, USA, January 6–7, 2004, Revised and Selected Papers, volume 3259 of Lecture
Notes in Computer Science, pages 218–233, Berlin Heidelberg, 2004. Springer-
Verlag.

8. A. Guerra-Hernández, C. González-Alarcón, and A. El FallahSeghrouchni. Jason
Induction of Logical Decision Trees (Jildt): A learning library and its application
to commitment. EUMAS 2010, 2010.

9. A. Guerra-Hernández and G. Ort́ız-Hernández. Toward BDI sapient agents: Learn-
ing intentionally. In R. V. Mayorga and L. I. Perlovsky, editors, Toward Artificial
Sapience, pages 77–91. Springer London, 2008.

10. A. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. In
R. van Hoe, editor, Seventh European Workshop on Modelling Autonomous Agents
in a Multi-Agent World, Eindhoven, The Netherlands, 1996.

11. A. Rao and M. Georgeff. Modelling rational agents within a BDI-Architecture.
Technical Report 14, Carlton, Victoria, February 1991.

12. A. S. Rao and M. P. Georgeff. Decision procedures for BDI logics. Journal of Logic
and Computation, 8(3):293–342, 1998.

13. D. Singh, S. Sardina, and L. Padgham. Extending BDI plan selection to incorporate
learning from experience. Robotics and Autonomous Systems, 58(9):1067 – 1075,
2010. Hybrid Control for Autonomous Systems.

14. D. Singh, S. Sardiña, L. Padgham, and G. James. Integrating learning into a BDI
agent for environments with changing dynamics. In IJCAI, pages 2525–2530, 2011.

A Jason Semantic Rules

The followingAgentSpeak(L) operational semantic rules are relevant for the pur-
poses of this paper, in particular for defining the relation with the rules defined
for collecting training examples and the way that an achievement goal deletion
event is triggered. For a detailed reviewing of this rules, is highly recommended
to consult the text in [3,2].

Tι = i[head←!at;h]

〈ag, C,M, T,ExecInt〉 → 〈ag, C ′,M, T, ProcMsg〉
(AchvGl)

s.t. C ′
E = CE ∪ {〈+!at, Tι〉}, C ′

I = CI \ {Tι}

Tι = [head← >]

〈ag, C,M, T,ClrInt〉 → 〈ag, C ′,M, T, ProcMsg〉
(ClrInt1)

s.t. C ′
I = CI \ {Tι}

〈a, i〉 ∈ CA execute(a) = e

〈ag, C,M, T, ProcAct〉 → 〈ag, C ′,M, T, ProcAct〉
(ExecAct)

s.t.
C ′
A = CA\{〈a, i〉}

C ′
I = CI ∪ {i′[te : ct← h]}, if e

C ′
E = CE ∪ {〈−%at, i〉}, if ¬e ∧ (te = +%at)

with i = i′[te : ct← a;h] and % ∈ {!, ?}

CA = {} ∨ (¬∃ 〈a, i〉 ∈ CA . execute(a) = e)

〈ag, C,M, T, ProcAct〉 → 〈ag, C,M, T,ClrInt〉
(ExecDone)

