
Jason Induction of Logical Decision Trees:
A learning library and its application to

Commitment

Alejandro Guerra-Hernández1, Carlos Alberto González-Alarcón1, and Amal
El Fallah Seghrouchni2

1 Departamento de Inteligencia Artificial
Universidad Veracruzana

Facultad de F́ısica e Inteligencia Artificial
Sebastián Camacho No. 5, Xalapa, Ver., México, 91000

aguerra@uv.mx, dn carlos@hotmail.com
2 Laboratoire d’Informatique de Paris 6

Université Pierre et Marie Curie
4, Place Jussieu, Paris, France, 75005

Amal.Elfallah@lip6.fr

Abstract. This paper presents JILDT (Jason Induction of Logical De-
cision Trees), a library that defines two learning agent classes for Jason,
the well known java-based implementation of AgentSpeak(L). Agents
defined as instances of JILDT can learn about their reasons to adopt in-
tentions performing first-order induction of decision trees. A set of plans
and actions are defined in the library for collecting training examples
of executed intentions, labeling them as succeeded or failed executions,
computing the target language for the induction, and using the induced
trees to modify accordingly the plans of the learning agents. The library
is tested studying commitment: A simple problem in a world of blocks is
used to compare the behavior of a default Jason agent that does not re-
consider his intentions, unless they fail; a learning agent that reconsiders
when to adopt intentions by experience; and a single-minded agent that
also drops intentions when this is rational. Results are very promissory
for both, justifying a formal theory of single-mind commitment based on
learning, as well as enhancing the adopted inductive process.

Keywords: Multi-Agent Systems, Intentional Learning, Commitment,
AgentSpeak(L).

1 Introduction

It is well known that the the Belief-Desire-Intention (BDI) model of agency [9,
10] lacks of learning competences. Intending to cope with this problem, this pa-
per introduces JILDT (Jason Induction of Logical Decision Trees): A library that
defines two learning agent classes for Jason [3], the well known java-based imple-
mentation of the AgentSpeak(L) BDI model [11]. Agents defined as instances



of the JILDT intentionalLearner class can learn about their reasons to adopt
intentions, performing first-order induction of logical decision trees [1]. A set of
plans and actions are defined in the library for collecting training examples of
executed intentions, labeling them as succeeded or failed executions, computing
the target language for the induction, and using the induced trees to modify
accordingly the plans of the learning agents. In this way, the intentional learning
approach [5] can be applied to any Jason agent by declaring the membership to
this class.

The second class of agents defined in JILDT deals with single-mind com-
mitment [9], i.e., an agent is single-mind committed if once he intends some-
thing, he maintains his intention until he believes it has been accomplished or
he believes it is not possible to eventually accomplish it anymore. It is known
that Jason agents are not single-minded by default [3, 6]. So, agents defined as
instances of the JILDT singleMinded class achieve single-mind commitment,
performing a policy-based reconsideration, where policies are rules for dropping
intentions learned by the agents. This is foundational and theoretical relevant,
since the approach reconciles policy-based reconsideration, as defined in the the-
ory of practical reasoning [4], with computational notions of commitment as the
single-mind case [9]. Attending in this way the normative and descriptive as-
pects of reconsideration, opens the door for a formal theory of reconsideration
in AgentSpeak(L) based on intentional learning.

Organization of the paper is as follows: Section 2 offers a brief introduction to
the AgentSpeak(L) agent oriented programming language, as defined in Jason.
An agent program, used in the rest of the paper, is introduced to exemplify the
reasoning cycle of Jason agents. Section 3 introduces the Top-Down Induction of
Logical Decision Trees (Tilde) method, emphasizing the way Jason agents can
use it for learning. Section 4 describes the implementation of the JILDT library.
Section 5 presents the experimental results for three agents in the blocks world:
a default Jason agent, an intentional learner and a single-mind committed agent.
Section 6 offers discussion, including related and future work.

2 Jason and AgentSpeak(L)

Jason [3] is a well known java-based implementation of the AgentSpeak(L) [11]
abstract language for BDI agents. As usual an agent ag is formed by a set of
plans ps and beliefs bs. Each belief bi ∈ bs is a ground first-order term. Each
plan p ∈ ps has the form trigger event : context ← body. A trigger event can
be any update (addition or deletion) of beliefs (at) or goals (g).The context of a
plan is an atom, a negation of an atom or a conjunction of them. A non empty
plan body is a sequence of actions (a), goals, or belief updates. > denotes empty
elements, e.g., plan bodies, contexts, intentions. Atoms (at) can be labelled with
sources. Two kinds of goals are defined, achieve goals (!) and test goals (?).

The operational semantics [3] of the language, is given by a set of rules that
define a transition system (see figure 1) between configurations 〈ag, C,M, T, s〉,
where:



– ag is an agent program formed by a set of beliefs bs and plans ps.
– An agent circumstance C is a tuple 〈I, E,A〉, where: I is a set of intentions; E

is a set of events; and A is a set of actions to be performed in the environment.
– M is a set of input/output mailboxes for communication.
– T stores the current applicable plans, relevant plans, intention, etc.
– s labels the current step in the reasoning cycle of the agent.

ProcMsg

SelEv RelPl ApplPl

SelAppl

AddIM

SelInt

ExecInt

ClrInt

SelEv2

SelEv1 Rel1

Rel2

Appl1Appl2

SelAppl
ExtEv
IntEv

SelInt1

SelInt2

Action

AchvGl

TestGl1
TestGl2

AddBel
DelBel

ClrInt2

ClrInt1
ClrInt3

Fig. 1. The transition system for AgentSpeak(L) operational semantics.

An artificially simplified agent program for the blocks world environment,
included in the distribution of Jason, is listed in the table 1. Examples in the
rest of this paper are based on this agent program. Initially he believes that the
table is clear (line 3) and that something with nothing on is clear too (line 2).
He has a plan labeled put (line 10) expressing that to achieve putting a block
X on Y , in any context (true), he must move X to Y . Our agent is bold about
putting things somewhere else. Now suppose the agent starts running in his
environment, where someone else asks him to put b on c. A reasoning cycle of
the agent in the transition system of Jason is as follows: at the configuration
procMsg the beliefs about on/2 are perceived (lines 5–8) reflecting the state
of the environment; and an event +!put(b, c) is pushed on CE . Then this event
is selected at configuration SelEv and the plan put is selected as relevant at
configuration RelP l. Since the context of put is true, it is always applicable and
it will be selected to form a new intention in CI at AddIM . Once selected for
execution at SelInt, the action move(b, c) will be actually executed at ExecInt
and since there is nothing else to be done, the intention is dropped from CI at
ClrInt. Coming back to ProcMsg results in the agent believing on(b, c) instead
of on(b, a).



Table 1. A simplified agent in the blocks world.

1 // Beliefs

2 clear(X) :- not(on(_,X)).

3 clear(table).

4 // Beliefs perceived

5 on(b,a).

6 on(a,table).

7 on(c,table).

8 on(z,table).

9 // Plans

10 @[put]

11 +!put(X,Y) : true <- move(X,Y).

Now, what if something goes wrong? For instance, if another agent puts the
block z on c before our agent achieves his goal? Well, his intention will fail.
And it will fail every time this happens. The following section introduces the
induction of logical decision trees, and the way they can be used to learn things
like put is applicable only when Y is clear.

3 Tilde

Top-down Induction of Logical Decision Trees (Tilde) [1] has been used for learn-
ing in the context of Intentional BDI agents [5], mainly because the inputs re-
quired for this method are easily obtained from the mental state of such agents;
and the obtained hypothesis are useful for updating the plans and beliefs of the
agents, i.e., these trees can be used to express hypotheses about the success-
ful or failed executions of the intentions, as illustrated in figure 2. This section
introduces Tilde emphasizing this compatibility with the agents in Jason.

A Logical Decision Tree is a binary first-order decision tree where:

– Each node is a conjunction of first-order literals; and
– The nodes can share variables, but a variable introduced in a node can only

occur in the left branch below that node (where it is true).

Three inputs are required to compute a logical decision tree: First, a set of
training examples known as models, where each trainning example is composed
by the set of beliefs the agent had when the intention was adopted; a literal
coding what is intended; and a label indicating a successful or failed execution
of the intention. Models are computed every time the agent believes an intention
has been achieved (success) or dropped (failure). Table 2 shows two models
corresponding to the examples in figure 2. The class of the examples is introduced
at line 2, and the associated intention at line 3. The rest of the model corresponds
to the beliefs of the agent when he adopted the intention.



success

failure

a c z

b

a c

zb

intend(put, A, B), clear(A)

success

failureclear(B)

failure

Fig. 2. A Tilde simplified setting: two training examples and the induced tree, when
intending to put b on c.

Table 2. The training examples from figure 2 as models for Tilde. Labels at line 2.

1 begin(model (1)) begin(model (2))

2 succ. fail.

3 intend(put ,b,c). intend(put ,b,c).

4 on(b,a). on(b,a).

5 on(a,table). on(a,table).

6 on(c,table). on(z,c).

7 on(z,table). on(c,table).

8 end(model (1)) end(model (2))

Second, the rules believed by the agent, like clear/1 in table 1 (lines 2–3),
do not form part of the training examples, since they constitute the background
knowledge of the agent, i.e., general knowledge about the domain of experience
of the agent.

And third, the language bias, i.e., the definition of which literals are to be
considered as candidates to be included in the logical decision tree, is defined
combinatorially after the literals used in the agent program, as shown in table 3.
The rmode directives indicate that their argument should be considered as a
candidate to form part of the tree. The lookahead directives indicate that the
conjunction in their argument should be considered as a candidate too. The last
construction is very important since it links logically the variables in the intended
plan with the variables in the candidate literals, enabling generalization.

For the considered example, the induced decision tree for two successful ex-
amples and one failed is showed in table 4. Roughly, it is interpreted as: when
intending to put a block A on B, the intention succeeds if B is clear (line 2),
and fails otherwise (line 3). With more examples, it is expected to build the tree
equivalent to the one shown in figure 2.

Induction is computed recursively as in ID3. A set of candidates is computed
after the language bias, and the one that maximizes information gain is selected
as the root of the tree. The process finishes when a stop criteria is reached.
Details about upgrading ID3 to Tilde, can be found in [2].



Table 3. The language bias defining the vocabulary to build the decision tree.

1 rmode(clear(V1)). rmode(on(V1 ,V2)). rmode(on(V2 ,V1)).

2 rmode(intend(put ,V1 ,V2)).

3 lookahead(intend(put ,V1 ,V2),clear(V1)).

4 lookahead(intend(put ,V1 ,V2),clear(V2)).

5 lookahead(intend(put ,V1 ,V2),on(V1 ,V2)).

6 lookahead(intend(put ,V1 ,V2),on(V2 ,V1)).

Table 4. The induced Logical Decision Tree.

1 intend(put ,A,B),clear(B) ?

2 +--yes: [succ] 1.0 [[succ :1.0, fail :0.0]]

3 +--no: [fail] 1.0 [[succ :0.0, fail :1.0]]

4 Implementation

JILDT implements two classes of agents: The first one is the intentionaLearner
class, that implements agents capable of redefining the context of their plans
accordingly to the induced decision trees. In this way, the reasons to adopt a
plan that has failed, as an intention in future deliberations, are reconsidered.
The second one is the singleMindedLearner class, that implements agents that
are also capable of learning rules that express when it is rational to drop an
intention. The body of these rules is obtained from the branches in the induced
decision trees that lead to failure. For this, the library defines a set of plans to
allow the agents to autonomously perform inductive experiments, as described
in section 3, and to exploit their discoveries. The table 5 lists the main actions
implemented in java to be used in the plans of the library. The rest of the section
describes the use of these plans by a learning agent.

Both classes of agents define a plan @initialLearningGoal to set the correct
learning mode (intentional or singleMinded) by extending the user defined plans
to deal with the learning process. For example, such extensions applied to the
plan put, as defined for the agent listed in table 1, are shown in the table 6.
The original body of the plan is at line 6. If this plan is adopted as an intention
and correctly executed, then the agent believes (line 8) a new successful training
example about put, including his beliefs at the time the plan was adopted.

Fun starts when facing problems: First, if the execution of an intention fails,
for instance, because move could not be executed correctly, an alternative added
plan, as the one showed in table 7, responds to failure event −!put(X,Y ). The
result is a failure training example added to the beliefs of the agent (line 4) and
an inductive process intended to be achieved (line 5).

But, if the context of the plan put is different from true, because the agent
already had learned a new context, or because he was defined like that, a failure
event will be produced and the inductive process should not be intended. In



Table 5. Principal actions defined in the JILDT library.

Action Description

getCurrentBels(Bs) Bs unifies with the list of current beliefs of the agent.
getCurrentCtxt(C) C unifies with the context of the current plan.
getCurrentInt(I) I unifies with the current intention.
getLearnedCtxt(P,LC,F) LC unifies with the learned context for plan P .

F is true if a new different context has been learned.
changeCtxt(P,LC) Changes the context of plan P for LC.
setTilde(P) Builds the input files for learning about plan P .
execTilde Executes Tilde saving inputs and results.
addDropRule(LC,P) Adds the rule to drop plan P accordingly to LC.
setLearningMode Modifies plans to enable learning (intentionalLearner).
setSMLearningMode Modifies plans to enable learning and dropping rules

(singleMindedLearner class).

Table 6. JILDT extensions for plan put (original body at line 6).

1 @[put]

2 +!put(X,Y) : true <-

3 jildt.getCurrentInt(I);

4 jildt.getCurrentBels(Bs);

5 +intending(I,Bs);

6 move(X,Y);

7 -intending(I,Bs);

8 +example(I,Bs ,succ);

this case we say that plan put was relevant but non applicable. The plan in
table 8 deals with this situation. It is rational to avoid commitment if there is
no applicable plans for a given event.

Observe that there is a small ontology associated to the inductive processes.
Table 9 lists the atomic formulae used with this purpose. These formulae should
be treated as a set of reserved words.

There is a plan @learning to build the inputs required by Tilde and exe-
cuting it. If the agent succeeds in computing a Logical Decision Tree with the
examples already collected, then he uses the tree to construct a new context for
the associated plan (branches leading to success) and a set of rules for dropping
the plan when it is appropriate (branches leading to failure). Two plans in the
library are used to verify if something new has been learned.

5 Experiments

We have designed a very simple experiment to compare the behavior of a default
Jason agent, an intentional learner, and single-minded agent that learns his
policies for dropping intentions. For the sake of simplicity, these three agents



Table 7. A plan added by JILDT to deal with put failures requiring induction.

1 @[put_failCase]

2 -!put(X,Y) : intending(put(X,Y), Bs) <-

3 -intending(I,Bs);

4 +example(I,Bs ,fail);

5 !learning(put);

6 +example_processed;

Table 8. A plan added by JILDT to deal with put being non applicable.

1 @[put_failCase_NoRelevant]

2 -!put(X,Y) : not intending(put(X,Y),_) <-

3 .print ("Plan ",put ," non applicable .");

4 +non_applicable(put).

are defined as shown in figure 1, i.e., they are all bold about putting blocks
somewhere else; and that is their unique compentece.

The experiment runs as illustrated in figure 3: The experimenter asks the
other agents to achieve putting the block b on c, but with certain probability
p(N), he introduces noise in the experiment by putting the block z on c. There
is also a latency probability p(L) for the last event: The experimenter could put
block z before or after it asks the others agents to put b on c. This means that
the other agents can perceive noise before or while intending to put b on c.

Numerical results are shown in table 10 (average of 10 runs, each one of
100 experiments) for a probability of latency of 50%. The probability of noise
varies (90%, 70%, 50%, 30%, and 10%). Lower values configure less dynamic
environments free of surprises and effectively observable. The performance of
the agent is interpreted as more or less rational as follows: dropping an intention
because of the occurrence of an error, is considered irrational. Refusing to form
an intention because the plan is not applicable; dropping the intention because
of a reason to believe it will fail; and achieving the goal of putting b on c are
considered rational behaviors.

Figure 4 summarizes the result of all the executed experiments, where the
probabilities of noise and latency range on {90%, 70%, 50%, 30%, 10%}. As ex-
pected the performance of the default agent is proportionally inverse to the
probability of noise, independently of the probability of latency.

The learner agent reduces the irrationality due to noise before the adoption
of the plan as intention, because eventually he learns that in order to intend to
put a block X on a block Y , Y must be clear:

put(X,Y) : clear(Y) <- move(X,Y).



Table 9. A small ontology used by JILDT.

Atom Description

drop(I) I is an intention to be dropped. Head of dropping rules.
root path(R) R is the current root to Tilde experiments.
current path(P) P is the current path to Tilde experiments.
dropped int(I) The intention I has been dropped.
example(P,Bs,Class) A training example for plan P , beliefs Bs and Class.
intending(I, Bs) I is being intended yet. Class is still unknown.
non applicable(TE) There were no applicable plans for the trigger event TE.

Table 10. Experimental results (average from 10 runs of 100 iterations each one) for
a probablity of latency of p(L)=0.5 and different probabilities of noise p(N).

Agent p(N)
Irrational Rational

after before total refuse drop achieve total

default 90 43.8 48.2 92.0 00.0 00.0 08.0 08.0
learner 90 48.7 37.3 86.0 04.5 00.0 09.5 14.0
singleMinded 90 44.5 38.8 83.3 03.2 03.8 09.7 16.7

default 70 34.5 36.0 70.5 00.0 00.0 29.5 29.5
learner 70 33.2 13.3 46.5 20.6 00.0 32.9 53.5
singleMinded 70 18.4 16.4 34.8 16.3 17.5 31.4 65.2

default 50 22.5 26.3 48.8 00.0 00.0 51.2 51.2
learner 50 26.1 05.4 31.5 20.7 00.0 47.8 68.5
singleMinded 50 11.6 09.9 21.5 16.1 14.9 47.5 78.5

default 30 14.2 15.0 29.2 00.0 00.0 70.8 70.8
learner 30 15.1 02.4 17.5 11.8 00.0 70.7 82.5
singleMinded 30 03.3 03.7 07.0 10.9 12.0 70.1 93.0

default 10 04.2 05.5 09.7 00.0 00.0 90.3 90.3
learner 10 05.3 01.0 06.3 04.9 00.0 88.8 93.7
singleMinded 10 00.9 00.9 01.8 03.8 03.4 91.0 98.2

Once this has been done, the learner can refuse to intend putting b on c if
he perceives c is not clear. So, for low latency probabilities, he performs better
than the default agent, but of course his performance decays as the probability
of latency increases; and, more importantly: there is nothing to do if he perceives
noise after the intention has been adopted. In addition, the singleMinded agent
learns the following rule for dropping the intention when block Y is not clear:

drop(put(X,Y)) :- intending(put(X,Y),_) & not(clear(Y)).

Every time a singleMindedLearner agent instance is going to execute an
intention, first it is verified that no reasons to drop the intention exist; otherwise
the intention is dropped. So, when the singleMinded agent already intends to
put b on c and the experimenter puts the block z on c, he rationally drops his
intention. In fact, the singleMinded agent only fails when it is ready to execute
the primitive action move and noise appears.



experimenter default learner singleMinded

Initial State

a c z
b

!put(b,c)
!put(b,c)

!put(b,c)

success

a c z
b

done(success)

done(success)

done(sucess)

p(N) failure

a c
zb

done(failure) Learning

failure before

a c
zb

done(failure)

+rejected_intention

p(L) failure 
after

a c
zb

done(failure)
done(failure)

+dropped_intention

+rejected_intention

Learning

Fig. 3. The experiment process.

For high probabilities of both noise and latency, the chances of collecting
contradictory training examples increases and the performance of the learner
and the singleMinded agents decay. By contradictory examples we mean that for
the same blocks configuration, examples can be labeled as success, but also as
failure. This happens because the examples are based on the beliefs of the agent
when the plan was adopted as an intention, so that the later occurrence of noise
is not included.

In normal situations, an agent is expected to have different relevant plans for
a given event. Refusing should then result in the adoption of a different relevant
plan as a new intention. That is the true case of policy-based reconsideration,
abandon is just an special case. Abandon is interpreted as rational behavior: the
agent uses his learned policy-based reconsideration to prevent a real failure.

6 Discussion and future work

Experimental results are very promising. When compared with other experi-
ments about commitment [7], it is observed that the intentionalLearner and
singleMinded agents are adaptive: they were bold about put, and then they
adopt a cautious strategy after having problems with their plan. Using inten-
tional learning provides convergence to the right level of boldness-cautiousness



Fig. 4. The experiment results. Left: Default performance. Right: Learner perfor-
mance. Center: SingleMinded performance

based on their experience. But also, it seems that a bold attitude is adopted
toward successful plans, and a cautious one toward failed plans; but more ex-
periments are required to confirm this hypothesis.

The JILDT library provides the extensions to AgentSpeak(L) required for
defining intentional learning agents. Using the library, it was also easy to im-
plement a single-mind committed class of agents. Extensions with respect to
implementation include: implementing the inductive algorithm in java as an ac-
tion of the JILDT library. Currently, the library computes the inputs for Tilde,
but executes it to compute the logical decision trees. In this sense, we obtained
a better understanding of the inductive method that will enable us to redefine
it in JILDT. For instance, experimental results suggest that induction could be
enhanced if the training examples represent not only the beliefs of the agent
when the intention was adopted, but also when it was accomplished or dropped,
in order to minimize the effects of the latency in noise.

The transition system for the singleMinded agents has been modified to
enable dropping intentions. Basically, every time the system is at execInt and
a drop learned rule fires, the intention is dropped instead of being executed. It
is possible now to think of a formal operational semantics for AgentSpeak(L)
commitment based on policy-based reconsideration and intentional learning.



In [12] an architecture for intentional learning is proposed. Their use of the
term intentional learning is slightly different, meaning that learning was the
goal of the BDI agents rather than an incidental outcome. Our use of the term
is strictly circumscribed to the practical rationality theory [4] where plans are
predefined and the target of the learning processes is the BDI reasons to adopt
them as intentions. A similar goal is present in [8], where agents can be seen
as learning the selection function for applicable plans. The main difference with
our work is that they propose an ad hoc solution for a given non BDI agent.
Our approach to single-mind commitment evidences the benefits of generalizing
intentional learning as an extension for Jason.

Acknowledgments. Authors are supported by Conacyt CB-2007 fundings for
project 78910. The second author is also supported by scholarship 273098.

References

1. Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees.
Artificial Intelligence, 101(1–2):285–297 (1998)

2. Blockeel, H., Raedt, L., Jacobs, N., Demoen, B.: Scaling up inductive logic pro-
gramming by learning from interpretations. Data Mining and Knowledge Discovery,
3(1):59–93 (1999)

3. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak using Jason. Wiley, England (2007)

4. Bratman, M.: Intention, Plans, and Practical Reason. Harvard University Press,
Cambridge (1987)

5. Guerra-Hernández, A., Ort́ız-Hernández, G.: Toward BDI sapient agents: Learning
intentionally. In: Mayorga, R.V., Perlovsky, L.I. (eds.) Toward Artificial Sapience:
Principles and Methods for Wise Systems, pp. 77–91. Springer, London (2008)

6. Guerra-Hernández, A., Castro-Manzano, J. M., El Fallah Seghrouchni, A.: CTL
AgentSpeak(L): a Specification Language for Agent Programs. Journal of Algo-
rithms, (64):31–40 (2009)

7. Kinny, D., Georgeff, M. P.: Commitment and effectiveness of situated agents.
In Proceeding of the Twelfth International Conference on Artificial Intelligence
IJCAI-91, pp. 82–88, Sidney, Australia (1991)

8. Nowaczyk, S., Malec, J.: Inductive Logic Programming Algorithm for Estimating
Quality of Partial Plans. In MICAI 2007, LNAI, vol. 4827, pp. 359–369 Springer
Verlag, Heidelberg (2007)

9. Rao, A.S., Georgeff, M.P.: Modelling Rational Agents within a BDI-Architecture.
In: Huhns, M.N., Singh, M.P., (eds.) Readings in Agents, pp. 317–328. Morgan
Kaufmann (1991)

10. Rao, A.S., Georgeff, M.P.: Decision procedures for BDI logics. Journal of Logic
and Computation 8(3), pp. 293–342 (1998)

11. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: de Velde, W.V., Perram, J.W. (eds.) MAAMAW. LNCS, vol. 1038, pp. 42–55.
Springer Verlag, Heidelberg (1996)

12. Subagdja, B., Sonennberg, L., Rahwan, I.: Intentional learning agent architecture.
Autonomous Agents and Multi-Agent Systems, 18:417–470 (2008)


